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Section 1: Multiple Choice

1. What is the value of

|1− |2− |3− |4− |5− |6− 7||||||?

(a) −2

(b) −1

(c) 0

(d) 1

(e) 2

Answer: C

Solution: We compute from right to left: |6− 7| = 1, |5− 1| = 4, |4− 4| = 0, |3− 0| = 3, |2− 3| = 1,

and |1− 1| = 0 .

2. Anna and Ben are competing in a race. Anna finishes in 7 minutes and 5 seconds, which is 1 minute
and 25 seconds faster than Ben. What percent slower is Ben than Anna?

(a) 20

(b) 22.5

(c) 25

(d) 27.5

(e) 30

Answer: A

Solution: Anna’s time is 7 · 60+5 = 425 seconds, while Ben’s time is 425+60+25 = 510 seconds. Ben

is 85 seconds slower than Anna, or 8500
425 % = 20% slower.

3. What is the smallest perfect square larger than 1 that is also a perfect cube?

(a) 27

(b) 36

(c) 49

(d) 64

(e) 81
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Answer: D

Solution: The smallest such integer is the smallest perfect sixth power greater than 1, since 6 is
the least common multipe of 2 and 3. This is 26 = 64 .

4. A fair coin is flipped four times in a row. What is the probability that it comes up heads at least half
of the time? Express your answer as a common fraction.

(a) 1
2

(b) 9
16

(c) 5
8

(d) 11
16

(e) 3
4

Answer: D

Solution: The number of ways for the coin to come up heads 0 ≤ h ≤ 4 times out of four is
(
4
h

)
.

The total number of outcomes for the coin flips is 24 = 16, giving a probability of
(42)+(

4
3)+(

4
4)

16 =
11

16
.

5. What is the positive difference between the solutions x to the equation

x2 − 5x+ 1 = 0?

Express your answer in simplest radical form.

(a)
√
6

(b)
√
21

(c) 2
√
6

(d)
√
29

(e) 2
√
13

Answer: B

Solution: By the quadratic formula, the solutions are x = 5±
√
21

2 , so the difference is
√
21 .

6. The base-10 positive integer N has a value of 106 in base 7. What is the value of N in base 13?

(a) 39

(b) 43

(c) 4A

(d) 57

(e) 70

Answer: B

Solution: We have N = 1 · 72 + 0 · 71 + 6 · 70 = 55 in base 10, which is 43 in base 13, since
55 = 4 · 131 + 3 · 130.

7. How many three-digit positive integers contain at least two prime digits?

(a) 256

(b) 320
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(c) 336

(d) 360

(e) 424

Answer: C

Solution: The prime digits are 2, 3, 5, and 7. If the hundreds digit and one other digit are prime, we
have 42 = 16 choices for their values, and 6 choices for the value of the other digit. On the other hand,
if the tens and units digits are prime, we only have 5 choices for the hundreds digit (since it cannot
be zero), giving 80 additional numbers. If all three digits are prime, we get an additional 43 = 64

numbers, for a total of 336 numbers.

8. How many non-congruent acute triangles have all angle measures equal to a positive integer number
of degrees?

(a) 585

(b) 630

(c) 660

(d) 675

(e) 720

Answer: D

Solution: If the smallest angle measures 1◦, the sum of the other two angles is 179◦, so we have
no possible triangles. If the smallest angle measure is 2◦, we have 1 possible triangle (2-89-89). If
the smallest is 3◦, we have 1 possible triangle, if the smallest is 4◦, then we have 2 triangles, if the
smallest is 5◦, 2 triangles, and so forth until the smallest is 45◦, at which point we get 22 triangles
(45-46-89 through 45-67-68). With a smallest angle of 46◦, we have 22 triangles, with a smallest of
47◦, 20 triangles, with a smallest of 48◦, 19 triangles, then 17 and 16 triangles for a smallest mea-
sure of 49◦ and 50◦, respectively, up until 60◦ which gives a single triangle. Altogether, this yields
(1+1+2+2+· · ·+22+22)+(22+20+19+17+16+14+· · ·+2+1) = 506+(42+36+30+· · ·+6)+1 = 675
triangles.

9. In how many ways can I roll four fair six-sided dice, each labeled from 1-6, so that I end up with rolls
whose values are in arithmetic progression, in some order?

(a) 30

(b) 51

(c) 63

(d) 75

(e) 78

Answer: E

Solution: The possible arithmetic progressions are the 6 constant progressions, and the permutations of
1234, 2345, and 3456, since a common difference of at least 2 is not possible. There are 6+4! · 3 = 78
such permutations.

10. Triangle ABC has side lengths AB = 3, BC = 4, and CA = 5. Triangle DEF is similar to ABC and
has perimeter, in units, numerically equal to 10 percent of its area, in square units. What is its area,
in square units?

(a) 1000
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(b) 1200

(c) 1800

(d) 2400

(e) 2500

Answer: D

Solution: Let DE = 3x, EF = 4x, and FD = 5x. Then its area is 3x·4x
2 = 6x2 and its perime-

ter is 12x, so 12x = 6x2

10 , from which x = 20 and the area is 6 · 202 = 2400 square units.

11. How many ordered triples (x, y, z) of positive integers have a product of 2022?

(a) 25

(b) 27

(c) 30

(d) 36

(e) 40

Answer: B

Solution: The factors of 2022 are 1, 2, 3, 6, 337, 674, 1011, and 2022. We then have the permutations
of (1, 1, 2022), (1, 2, 1011), (1, 3, 674), (1, 6, 337), and (2, 3, 337), of which there are 3 + 4 · 3! = 27 .

12. Triangle ABC has side lengths AB = 6, BC = 8, and CA = 10. A circle with center O is inscribed in
△ABC. What is the square of the length of OC?

(a) 20

(b) 28

(c) 32

(d) 38

(e) 40

Answer: E

Solution: The inscribed radius r of a triangle with semi-perimeter s satisfies the equation A = rs,
where A is the area of the triangle. Since A = 6·8

2 = 24 (because △ABC is a right triangle), and

s = 6+8+10
2 = 12, we get r = 2. Then OC2 = (8− 2)2 + 22 = 40 .

13. In how many ways can 16 be written as a sum of prime positive integers in non-increasing order? (For
example, 7 + 5 + 2 + 2 is one such representation.)

(a) 11

(b) 12

(c) 14

(d) 16

(e) 17

Answer: C

Solution: We have 13 + 3, 11 + 5, 11 + 3 + 2, 7 + 7 + 2, 7 + 5 + 2 + 2, 7 + 3 + 3 + 3, 7 + 3 + 2 + 2 + 2,
5 + 5 + 3 + 3, 5 + 2 + 2 + 2 + 2, 5 + 3 + 3 + 3 + 2, 5 + 3 + 2 + 2 + 2 + 2, 3 + 3 + 3 + 3 + 2 + 2,
3 + 3+ 2+ 2+ 2+ 2+ 2, and 2 + 2+ 2+ 2+ 2+ 2+ 2+ 2, for a total of 14 ways. The more rigorous
way to go about this is to utilize recursion: a 5 can be written as 3 + 2, a 7 as 3 + 2 + 2, etc.
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14. If n is a positive integer for which
√
n+ 1−

√
n < 0.1, what is the smallest possible value of n?

(a) 24

(b) 25

(c) 26

(d) 49

(e) 50

Answer: B

Solution: Write the inequality as

√
n+ 1 <

√
n+ 0.1,

and square both sides to obtain

n+ 1 < n+ 0.01 + 0.2
√
n.

Thus, 0.99 < 0.2
√
n, from which

√
n > 4.95 and n ≥ 25 .

15. Albert and George are playing a very large number of games of rock-paper-scissors. So far, Albert
has won 50.5 percent of the games, and George has won the remaining 49.5 percent. If George were
to somehow win the next 400 games in a row (!), Albert will have won 49.5 percent of all the games
played up to that point, while George will retake the lead with 50.5 percent of the games won. How
many games have they played so far, not including the 400 games that would put George in the lead?

(a) 19200

(b) 19600

(c) 19800

(d) 20000

(e) 20200

Answer: C

Solution: Say Albert has won 101n games while George has won 99n games. When George wins
the next 400 games in a row, we will have 101n = 99

101 (99n + 400), or 101n = 9801
101 n + 39600

101 . Hence,
10201n = 9801n+39600, so that 400n = 39600 and n = 99. Therefore, Albert and George have played
200n = 19800 games so far.

16. A magical coin has the property that all flips until the point when at least one heads and at least one
tails have been flipped have probability 1

2 of coming up heads and probability 1
2 of coming up tails.

After both heads and tails have come up at least once, the probability of the coin coming up heads is
h

h+t and the probability of it coming up tails is t
h+t , where h and t are the numbers of heads and tails

flipped up to that point, respectively. What is the probability that, out of 5 flips, exactly 4 are heads?

(a) 5
32

(b) 3
16

(c) 7
32

(d) 17
64

(e) 9
32
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Answer: D

Solution: The probabilities of both THHHH and HTHHH are 1
4 · 1

2 · 2
3 · 3

4 = 1
16 . The probability

of HHTHH is 1
8 · 2

3 · 3
4 = 1

16 . The probability of HHHTH is 1
16 · 3

4 = 3
64 , and finally the probability of

flippping HHHHT is 1
32 . Altogether, this gives a probability of

17

64
.

17. Let r and s be the roots of x2 + 20x+ 22, and let t and u be the roots of x2 + 20x+ 23. What is the
value of rt+ ru+ st+ su?

(a) 200

(b) 305

(c) 400

(d) 485

(e) 548

Answer: C

Solution: This is (r + s)(t + u) = (−20)(−20) = 400 by Vieta’s formulas (which give r + s =
t+ u = −20).

18. The number 2023 has the property that all of its nonzero digits have a product of 12. How many
four-digit positive integers have this property?

(a) 63

(b) 66

(c) 72

(d) 78

(e) 81

Answer: E

Solution: We have the permutations of 1126, 1134, 1026, 1034, 2023, 2006, and 3004, of which there
are 12 + 12 + 18 + 18 + 9 + 6 + 6 = 81 .

19. What is the sum of the base-16 logarithms of all of the positive integer divisors of 4096? Express your
answer as a common fraction.

(a) 55
4

(b) 33
2

(c) 39
2

(d) 91
4

(e) 105
4

Answer: C

Solution: Recall that logb(x) + logb(y) = logb(xy). Converting all of the divisors of 4096 = 163 = 212,

which are the powers of 2 from 20 to 212 inclusive, to powers of 16, we get 16
k
4 for 0 ≤ k ≤ 12. Summing

the exponents (since am · an = am+n) gives 16
78
4 , the base-16 logarithm of which is

39

2
.
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20. For every real number x, let ⌊x⌋ be the greatest integer less than or equal to x. For example, ⌊5.99⌋ = 5
and ⌊−π⌋ = −4. What is the smallest positive integer n such that

⌊
√
1⌋+ ⌊

√
2⌋+ ⌊

√
3⌋+ · · ·+ ⌊

√
n⌋ ≥ 100?

(a) 30

(b) 37

(c) 44

(d) 51

(e) 58

Answer: A

Solution: Up to 3, the floors are 1; up to 8, they are 2; up to 15, they are 3, and so forth. We
have a sum of 3 · 1 + 5 · 2 + 7 · 3 + 9 · 4 = 70 up to n = 24, so we need six more 5 terms, which gives
n ≥ 30 .

21. Rectangle ABCD has positive integer side lengths r and s. Points E and F trisect AB, points G and
H trisect BC, points I and J trisect CD, and points K and L trisect DA. If the area of octagon
EFGHIJKL is 2023, compute the number of possible ordered pairs (r, s).

(a) 8

(b) 9

(c) 10

(d) 12

(e) 15

Answer: B

Solution: The octagon is the rectangle with four triangles cut out, each of which has side lengths
1
3 of those of the rectangle. Hence, the octagon’s area is 1− 4 · 12 ·

(
1
3

)2
= 7

9 times that of the rectangle.

As 2023 is 7
9 of 289 · 9 = 172 · 32, we want to count the divisors, of which there are 9 .

22. How many ordered tuples of positive integers have the property that the sum of the squares of the
integers is 10?

(a) 15

(b) 16

(c) 18

(d) 20

(e) 21

Answer: B

Solution: We have the permutations of (3, 1), (2, 2, 1, 1), 2 and six 1s, and ten 1s, of which there

are 2 +
(
4
2

)
+ 7 + 1 = 16 .

23. Rectangle ABCD has side lengths AB = 4 and BC = 5. Point E is the midpoint of AB, and point F
lies on BC such that BF = 4 and FC = 1. Line segments AF and DE intersect at point G. What is
AG
AF ? Express your answer as a common fraction.

(a) 1
3
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(b) 5
14

(c) 2
5

(d) 7
16

(e) 9
20

Answer: B

Solution: Let A = (0, 5), B = (4, 5), C = (4, 0), and D = (0, 0), without loss of generality. Then
E = (2, 5) while F = (4, 1), so AF has equation x + y = 5 while DE has equation y = 5

2x. These

intersect where x = 10
7 and y = 25

7 , so that AG
AF =

5

14
.

24. For each positive integer n, let Z(n) be the number of 0s in which n ends. For example, Z(20220000) = 4
and Z(10001) = 0. What is the sum of Z(n) over all positive integer factors of 1010?

(a) 120

(b) 165

(c) 220

(d) 286

(e) 325

Answer: C

Solution: Each factor is of the form n = 2i5j , where 0 ≤ i, j ≤ 10, and Z(n) = max(i, j), since

we need both a 2 and 5 to form a factor of 10. Hence, our sum is 1 ·10+2 ·9+3 ·8+ · · ·+10 ·1 = 220 .

25. How many ordered triples of positive integers have a least common multiple of exactly 6?

(a) 42

(b) 45

(c) 47

(d) 49

(e) 50

Answer: D

Solution: We have 43 = 64 possible triples, from the triples consisting of elements 1, 2, 3, and 6
which are the positive factors of 6. Of these, 23 − 1 = 7 have only 1s and 3s, and not all 1s, hence an
LCM of 3, 23 − 1 = 7 have only 1s and 2s, and not all 1s, hence an LCM of 2, and one is the triple of
all 1s. This gives 64− 7− 7− 1 = 49 triples with an LCM of 6.

26. A geometric progression has a non-integer (but rational) common ratio, and has 7 terms, all of which
are all integers. If not every term is a multiple of the last term, what is the smallest possible sum of
all terms in the geometric progression?

(a) 254

(b) 665

(c) 1093

(d) 2059

(e) 2186
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Answer: D

Solution: The common ratio cannot have a numerator of 1, since not every term is a multiple of
the last term. Hence, we want it to be 2

3 , because we want the denominator to be as small as pos-
sible. This means that the last term may be as small as 36 = 729, from which we get a sum of
729 + 486 + 324 + 216 + 144 + 96 + 64 = 2059 .

27. How many permutations of (1, 2, 3, 4, 5) have three consecutive elements a, b, and c, in that order, for
which a+ b = c?

(a) 16

(b) 20

(c) 22

(d) 28

(e) 34

Answer: C

Solution: The consecutive elements may be 1, 2, and 3; 1, 3, and 4; 1, 4, and 5; or 2, 3, and 5.
There are 3 positions to place the consecutive elements (positions 1-3 from left to right, positions 2-4,
or positions 3-5), and 2 ways to order the other two elements. However, we have double-counted the

permutations 12354 and 41235, so we actually have 4 · 6− 2 = 22 permutations.

28. Two complex numbers x and y satisfy the equations

x2 + y2 = 3,

x2 + 2xy − y2 = 7.

Given that it is positive, what is the imaginary part of y2? Express your answer as a common fraction
in simplest radical form.

(a)
√
17
4

(b) 3
√
3

4

(c)
√
31
4

(d)
√
33
4

(e)
√
65
4

Answer: C

Solution: We have x2 + y2 = (x + y)2 − 2xy = 3, and x2 + 2xy − y2 = (x + y)2 − 2y2 = 7. Hence,
2xy = 2y2 + 4, from which xy = y2 + 2, x = y + 2

y , and x2 = y2 + 4 + 4
y2 . Thus, 2y2 + 4 + 4

y2 = 3,

and 2y4 + y2 + 4 = 0, upon which substituting z := y2 yields 2z2 + z + 4 = 0 and z = −1±i
√
31

4 , whose

imaginary part is

√
31

4
(taking the positive value, as per the problem statement).

29. Let x and y be positive real numbers chosen uniformly at random from the set of ordered pairs (x, y)
of positive real numbers such that x + y = 3. What is the expected value of the greatest integer not
exceeding xy? Express your answer as a common fraction in simplest radical form.

(a)
√
3+1
3

(b)
√
5+1
3
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(c) 2
√
7−3
2

(d)
√
5+3
3

(e) 2
√
13−1
2

Answer: B

Solution: We have y = 3 − x. If x(3 − x) < 1, or x2 − 3x + 1 < 0, then 0 < x < 3−
√
5

2 . By

symmetry, also, 3+
√
5

2 < x < 3, which are the intervals for which 0 is the largest integer not exceeding

xy. This integer is 1 whenever 1 ≤ x(3 − x) < 2, or 3−
√
5

2 ≤ x < 1 or 2 < x ≤ 3+
√
5

2 . Finally, this
integer is 2 when 1 ≤ x ≤ 2, since the maximum value of x(3 − x) is 2.25, attained at x = 1.5. It

follows that the expected value of this integer is 1·(
√
5−1)+2·1
3 =

√
5 + 1

3
.

30. Let triangle ABC have side lengths AB = 7, BC = 9, and CA = 8. Point D lies on BC with

tan(m∠BAD) = 2 tan(m∠DAC). The value of tan(m∠DAC) can be written in the form
√
p−√

q

r ,
where p, q, and r are positive integers and neither p nor q is a multiple of the square of a prime
number. What is p+ q + r?

(a) 18

(b) 21

(c) 32

(d) 62

(e) 70

Answer: E

Solution: We have

tan(m∠BAC) = tan(m∠BAD +m∠DAC) =
x+ 2x

1− x · 2x
=

3x

1− 2x2
.

To compute tan(m∠BAC), we use the area formula 1
2ab sin(C) to get that sin(m∠BAC) = 3

7

√
5, and

so tan(m∠BAC) = 3
2

√
5. Solving for x in the equation

3x

1− 2x2
=

3

2

√
5,

we get

x2(2
√
5) + 2x−

√
5 = 0,

or x = −1±
√
11

2
√
5

, the positive value which is
√
55−

√
5

10 . As such, p+ q + r = 55 + 5 + 10 = 70 .
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Section 2: Short Answer

31. A positive integer with two digits is a multiple of 3, and its digits sum to a prime number. What is
the sum of the possible values of this integer?

Answer: 63

Solution: The digit sum is a multiple of 3, so it must be exactly 3. Then the integer can be 12,
21, or 30, and these sum to 63 .

32. How many integers from 0 through 7, inclusive, could be the remainder when the sum of two (not
necessarily different) positive integer perfect squares is divided by 8?

Answer: 5

Solution: A perfect square must leave a remainder of 0, 1, or 4 when divided by 8; this is because
(8k)2 = 64k2 ≡ 0 mod 8, (8k+1)2 = 64k2 +16k+1 ≡ 1 mod 8, (8k+2)2 = 64k2 +32k+4 ≡ 4 mod 8,
(8k+3)2 = 64k2+48k+9 ≡ 1 mod 8, (8k+4)2 = 64k2+64k+16 ≡ 0 mod 8, and likewise for (8k+5)2,
(8k + 6)2, and (8k + 7)2 by symmetry. Thus, 0, 1, 2, 4, and 5 could be remainders when the sum of

two perfect squares is divided by 8, for 5 possible values.

33. For how many positive integers n does 2022 leave a remainder of 2 when divided by n?

Answer: 10

Solution: This is the number of factors of 2022− 2 = 2020 = 22 · 5 · 101, which is (2 + 1)(1 + 1)(1 + 1),

excluding 1 and 2, so we get 10 .

34. Let d(n) be the units digit of n. What is the value of

d(12) + d(22) + d(32) + · · ·+ d(20222)?

Answer: 9095

Solution: The units digits of the positive perfect squares up to 102 are 1, 4, 9, 6, 5, 6, 9, 4, 1, 0, in that
order, repeating every ten. Thus, our sum is (1 = 4+9+6+5+6+9+4+1+0) ·202+1+4 = 9095 .

35. A fair six-sided die is labeled with the positive integers from 1 through 6, inclusive. What is the
expected value of the square of a single roll? Express your answer as a common fraction.

Answer:
91

6

Solution: This is 12+22+32+42+52+62

6 =
91

6
, since all rolls are equally likely.

36. Rectangle ABCD has side lengths AB = 4 and BC = 3. Point E lies in the plane of ABCD, on the
same side of AC as point B, so that AE ⊥ AC and AE = 10. What is the length of line segment DE?
Express your answer in simplest radical form.

Answer:
√
157

Solution: The horizontal and vertical distances from A to E are 6 and 8, respectively, and the rectan-

gle’s height is 3, so the distance is
√
62 + (8 + 3)2 =

√
157 .

37. In how many ways can we choose two distinct positive integers from the set {1, 2, 3, · · · , 100} that sum
to a multiple of 33?

Page 11



Answer: 150

Solution: For sums of 33, 66, and 99, we have (1, 32) through (16, 17), (1, 65) through (32, 34), and
(1, 98) through (49, 50), respectively. For 132, 165, and 198, we have (32, 100) through (65, 67), (65, 100)

through (82, 83), and (98, 100), respectively. This gives a total of 16 + 32 + 49 + 34 + 18 + 1 = 150
ways.

38. If x and y are positive real numbers such that x2+y2 = 23 and x3+y3 = 110, what is the value of x4+y4?

Answer: 527

Solution: We have (x + y)2 − 2xy = 23 and (x + y)(x2 − xy + y2) = (x + y)((x + y)2 − 3xy) =
(x+y)(23−xy) = 110. If x+y = a and xy = b, then a2−2b = 23 and a(23− b) = 110, so b = 23− 110

a
and a2 − 46 + 220

a = 23, or a3 − 69a + 220 = 0. Then, by the rational root theorem, a = 5 is a root,
and we factor out an a− 5 term (by setting the quotient equal to some arbitrary quadratic a2+ ba+ c)

to get a2 + 5a − 44 = 0, or a = −5±
√
201

2 . As x + y > 0 and xy > 0, since x and y are both positive,

we can only have x + y = 5, since even −5+
√
201

2 <
√
23. This can be verified by squaring both sides,

so that we get 226−10
√
201

4 < 23, or 10
√
201 > 134. This is true, because 20100 > 1342 = 17956. Thus,

xy = 1, and x4 + y4 = (x2 + y2)− 2(xy)2 = 232 − 2 = 527 .

39. Two distinct integers from 1 through 10, inclusive, are chosen uniformly at random. What is the
expected value of their greatest common factor? Express your answer as a common fraction.

Answer:
67

45

Solution: There are
(
10
2

)
= 45 total pairs of integers that can be chosen. Of these,

(
5
2

)
− 1 = 9

have a GCF of 2, 1 has a GCF of 4 ((4, 8)),
(
3
2

)
= 3 have a GCF of 3, and one ((5, 10)) has a GCF of

5. The rest have GCF 1, so the expected GCF is 31·1+9·2+3·3+1·4+1·5
45 =

67

45
.

40. For some positive integer n, the triangle with side lengths 2,
√
17, and

√
n has area 1. What is the

sum of all possible values of n?

Answer: 42

Solution: Without loss of generality, say the triangle has vertices at (0, 0) and (2, 0). Observe that
17 = 42+12, and that the triangle must have height 1 in order to have area 1, so this is the only viable
way to split 17 into a sum of squares. We then have n2 = (2− 4)2 +12 = 5 or n2 = (2+ 4)2 +12 = 37,

so the sum of the possible values of n is 42 .

41. (Source: BmMT 2021) What is the sum of 1
n over all positive integer factors n of 360? Express your

answer as a common fraction.

Answer:
13

4

Solution: Say a factor n of 360 is equal to 360
k , where k is an integer that is itself a factor of 360.

Then 1
n = k

360 , and so we want to sum k
360 over all factors k of 360. This is 1

360 the sum of factors of
360 = 5 · 32 · 23, which is (5 + 1)(32 + 3 + 1)(23 + 22 + 2 + 1) = 1170. Simplifying the quantity 1170

360 ,

we get
13

4
as the desired sum.

42. How many sequences of positive integers in non-decreasing order have a last term no larger than 10?
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Answer: 184766

Solution: Suppose the sequence has length 2 ≤ l ≤ 10 with last term t. Then we want to add a
total n (such that the first term is t−n) that is at most 9 in the form of l−1 non-negative integer addi-

tions, which by stars-and-bars can be done in
(
n+(l−1)−1

l−2

)
=

(
n+l−2
l−2

)
ways. Summing over 2 ≤ l ≤ 10,

1 ≤ t ≤ 10, and 0 ≤ n ≤ t− 1, we want to compute

10 +

10∑
l=2

10∑
t=1

t−1∑
n=0

(
n+ l − 2

l − 2

)

= 10 +

10∑
l=2

10∑
t=1

(
t+ l − 2

l − 1

)

= 10 +

10∑
l=2

10∑
t=1

(
t+ l − 2

l − 1

)
by the Hockey-Stick identity, which in turn simplifies to

= 10 +

10∑
l=2

(
l + 9

l

)

= 10 +

10∑
l=2

(
l + 9

9

)

= 10 +

(
20

10

)
= 184766 .

43. Triangle ABC has AB = 13, BC = 14, and CA = 15. Points D and E lie on AB and CD, respectively,
such that m∠DAE = m∠EAC. If DE = 2, what is the largest integer less than or equal to 10 times
the length of AD?

Answer: 25

Solution: Let AD = x; then by the angle bisector theorem, DC = 2 + 30
x . It’s also equal to√(

12 · 13−x
13

)2
+
(
9 + 5

13x
)2
, since we can drop the altitude with length 12 from A to BC to get a

5-12-13 right triangle and a 9-12-15 right triangle. If x = 2.6, then the LHS is 176
13 ≈ 13.54, while the

RHS is
√

2304
25 + 100 ≈ 13.86. (These can be reasonably approximated to 1 decimal place.) However,

for x = 2.5, the LHS is 14, while the RHS is certainly smaller than 13.86, so 2.5 < AD < 2.6, and the
answer is 25 .

44. Let B be the answer to question 45. In how many ways (with respect to order) can we construct a list
of three elements chosen from either B or C, such that their sum is an odd multiple of 3? ((2, 2, 5) and
(5, 2, 2) are two different lists, for example.)

Answer: 4

45. Let C be the answer to question 46. What is the geometric mean of A and C?

Answer: 6
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46. Let A be the answer to question 44. What is the largest positive integer k for which 2k is a factor of
A3B3?

Answer: 9

Solution to questions 44-46: Note that, in question 46, the answer cannot be zero, so at least one
of A and B is even. Begin by noting that, if exactly one of B or C is odd, then A = 4, but only if the
even number is congruent to the other modulo 3, since we can have odd + odd + odd or odd + even
+ even (in three different ways). If both are even, then A = 0, and if both are odd and congruent mod
3, then A = 8, and otherwise, A = 2.

If B is even, then AC is a multiple of 4. If C is odd, then, A must be a multiple of 4, and this
also means that C ≥ 6. Since

√
AC is a positive integer, also noting that C is a multiple of 3, with

A = 4, we get C = 9 and B = 6, which works. If A = 8, then
√
AC cannot be even without C also

being even.

If we instead assume C is even, then AB is a multiple of 4, and ABC = B2 is a multiple of 8.
This means that B must be a multiple of 4, and AC is actually a multiple of 16. As C is a multiple
of 3, AC = B2 is a multiple of 48, so B is a multiple of 12. This means AC is a multiple of 144. But
since A ≤ 8, C must be at least 18, implying that AB is divisible by 64. Hence, B must be divisible by
8, and thus, by 24, meaning AC is actually divisible by 576, and C is divisible by 72. In turn, AB is
divisible by 224, B is divisible by 221, AC is a multiple of 242, and so on, in an infinite descent. Thus
this case cannot happen.

On the other hand, if we instead suppose that B is odd, then AC = B2 must be odd, and A
and C are both odd as a result. Thus, AB is odd and C = 0, but this is a contradiction! Hence

(A,B,C) = (4, 6, 9) is the unique solution.
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Section 3: Free Response

47. [35] Definitions and their applications.

(a) [3] Please state the Binomial Theorem, and use it to find the coefficient of x5y2 in

(3x+ 2y)7.

Solution: The binomial theorem, in its simplest and most familiar form, says that

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k.

Unpacking this notation for a bit: we define the choose function(
n

k

)
=

n!

k!(n− k)!
,

which is the number of ways to choose k objects out of a total of n distinguishable objects, without
regard to order. The theorem holds, because in expanding out the left-hand side, we can “choose”
k powers of x and n− k powers of y to multiply to an xkyn−k term in

(
n
k

)
ways.

More generally, we also have

(ax+ by)n =

n∑
k=0

(
n

k

)
akbn−kxkbn−k

which can be seen through the same reasoning. We also have Newton’s binomial theorem, which
extends this to negative and/or fractional powers. The coefficient of x5y2 in (3x + 2y)7 is then(
7
2

)
3522 = 20412 .

(b) [3] What is the Pigeonhole Principle? Please use it to show that, for any three positive integers,
the sum of some two of them must always be even.

Solution: The Pigeonhole Principle states that, whenever we are sorting n objects into k disjoint
groups, and n > k, at least one of the groups must contain two or more objects. In particular,
one group must contain at least

⌊
n
k

⌋
objects. This is because, if we tried to fill each group with

as few objects as possible in each group, we’d run out of space after k objects, but we’d still have
some left over – hence, one woud need to go in a group that already has an object, making it have
2 or more objects after all of them are sorted.

Suppose we had three positive integers a, b, and c, each of which is either even or odd. The pi-
geonhole principle (here with n = 3 and k = 2; the objects are the integers, and the groups/holes
are the different possible parities of a positive integer, of which there are two – odd and even)
says that some two of the integers must either be both even or both odd. Either way, we can sum
the two integers that are of the same parity together to get an even number (since even + even
= even, and odd + odd = odd).

(c) [4] Please explain the combinatorial concept of stars and bars, and apply it to solve a problem of
your choosing.

Solution: The stars-and-bars method applies to a situation where we want to sort some num-
ber n of indistinguishable objects into some number k of indistinguishable bins. The method
gets its name from the situation where we have a certain number of “stars,” or indistinguishable
objects, and want to separate them by way of a certain number of “bins” into a number of disjoint
groups.
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For example, say we wanted to find the number of ordered triples of positive integers summing to
7. An equivalent problem is to find the number of ordered triples of non-negative integers sum-
ming to 4. By stars-and-bars, this is the same as placing two bars (since we want three groups,
we need two separators, as each separator forms a new group) between 4 stars, where each “star”
represents an “action” of adding 1 to one of the three integers, beginning with 0/0/0. How many
ways can we do this? That is, how many ways can we arrange 4 stars and 2 bars in one row of
6 objects? It’s just

(
6
2

)
= 15. This, of course, assumes we can have two bars right next to each

other, which we can: this variant of the problem says nothing about not being able to have an
empty group or groups (i.e. one or two of the integers being equal to 0).

In general, what if we had k bars to place between n stars? There would be a total of n + k
objects, and k places to put the bars, hence

(
n+k
k

)
ways to arrange all of the objects. We’d actu-

ally have k+1 groups if we did this, though, so we tend to use the formula
(
n+k−1
k−1

)
in reference to

having k groups (such as numbers of positive integers) and n stars. And in our previous example
– with n = 4 and k = 3 (that is, 3 non-negative integers that sum to 4), does this formula work?
Yes – we get

(
4+3−1
3−1

)
= 15 as earlier, so it looks like everything checks out!

(d) [5] Please state Vieta’s formulas for a quadratic polynomial. How can we calculate the sum of
the squares of the roots of a quadratic polynomial? What about the sum of the fourth powers?
Can you generalize this to polynomials of arbitrary degree?

Solution: Vieta’s formulas state that the sum and the product of the roots of ax2 + bx + c
(a ̸= 0) are − b

a and c
a , respectively. These can be proven by a direct application of the quadratic

formula, and/or by noting that the axis of symmetry of this parabola is x = − b
2a , and that

the roots are symmetric about this axis. Denote by r and s the roots of this polynomial. To

compute r2 + s2 = (r + s)2 − 2rs, we calculate b2

a2 − 2c
a = b2−2ac

a2 . Similarly, we compute
r4 + s4 = (r2 + s2)2 − 2r2s2. For a generalization, we can turn to Newton’s sums, which al-
low us to define recurrence relations in the sums Sk of the kth powers of the roots of a polynomial.
Where we have a polynomial

anx
n + an−1x

n−1 + an−2x
n−2 + · · ·+ a1x+ a0

with roots x1, x2, x3, · · · , xn, we have the recurrence relations

anS1 + an−1 = 0,

anS2 + an−1S1 + an−2 = 0,

anS3 + an−1S2 + an−2S1 + an−3 = 0,

...

where ai = 0 whenever i < 0. To prove that these hold (although certainly not necessary for full
credit), we substitute each root into the polynomial and get 0 each time, then multiply each of
the resulting n equations by xk−n

1 to get n equations in xk
1 , x

k
2 , x

k
3 , and so forth, which we then

add together to obtain a single polynomial equation in (xk
1 + xk

2 + xk
3 + · · · + xk

n). From this we
obtain the general recurrence relation.

(e) [6] Please carefully state de Moivre’s theorem. Why can we represent complex numbers in terms
of sine and cosine? How do you think we might define sine and cosine for complex arguments?

Solution: de Moivre’s theorem states that, for all real numbers x and positive integers n,

(cos(x) + i sin(x))n = cos(nx) + i sin(nx).

Because complex numbers x + iy are (a priori) represented by points (x, y) ∈ R2, we can do
the same with the quantity sin(x) + i cos(x): the result is a vector from the origin to the point
(sin(x), cos(x)), which will always have magnitude 1 (as sin2(x) + cos2(x) = 1 for all x). Indeed,
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this identity itself comes as a consequence of the unit circle, which consists of all points of the
form (sin(x), cos(x)) for 0 ≤ x < 2π.

Because of this, and Euler’s formula cos(x) + i sin(x) = eix, we can actually extend sine and
cosine to complex arguments:

sin(z) =
eiz − e−iz

2i
,

cos(z) =
eiz + e−iz

2

(using the facts that sin(−z) = − sin(z) and cos(−z) = cos(z) for z ∈ C).
(f) [7] Please define the power of a point with respect to a circle, and carefully state the power of a

point theorem in all of its forms. Please sketch a proof of at least one of those forms.

Solution: With respect to a circle with center O and radius r, the power of the point P in the plane
of the circle is OP 2 − r2. The power of a point theorem, in its first form, says that for two chords
AC and BD of a circle intersecting at point P inside the circle, we have AP ·CP = BP ·DP ; in
its second form, it says that for a tangent AB and secant BD of a circle meeting at the point B
outside the circle, we have AB2 = BC · BD; and in its third form, it says that, for two secants
AC and CE with B and D being the points of itnersection of these secants with the circle’s
circumference, we have AC · BC = CD · CE. For a proof of all three of these forms at once, it
suffices to note that △ABP is similar to △CDP , in particular drawing the line segment AC.

(g) [7] What is Euler’s phi/totient function, and why is it a multiplicative function? Please carefully
state and prove Fermat’s little theorem and Euler’s totient theorem, and explain why FLT is a
direct consequence of Euler’s theorem.

Solution: Euler’s totient function φ : N → N is defined such that φ(n) is the number of pos-
itive integers less than or equal to n that are relatively prime to n. Recall the definition of a
multiplicative function f (over the positive integers, without loss of generality): for relatively
prime positive integer arguments m and n, f(m)f(n) = f(mn). To prove that φ satisfies this
property, consider a rectangular array of m rows and n columns, and label the cells with the
positive integers from 1 through mn, inclusive. Now cross out any cell whose label has a factor of
either m or n: we should end up with a sub-array that has dimensions φ(m) by φ(n). (Consider
also the connection this has with the statement of the Chinese remainder theorem!)

Fermat’s little theorem says that, for a positive integer a and prime number p, ap ≡ a mod p, or
equivalently, ap−1 ≡ 1 mod p. Euler’s theorem is a generalization of FLT, in that for all n with
gcd(a, n) = 1, aφ(n) ≡ 1 mod n (clearly, this holds for prime p, since φ(p) = p−1, the only integer
less than or equal to p not relatively prime with p being p itself).

We prove FLT by induction via the binomial theorem (though perhaps more elegant combi-
natorial methods certainly exist). The base case a = 0 is trivial; assuming ap ≡ a mod p for a not
a multiple of p, we want to show that

(a+ 1)p ≡ (a+ 1) mod p.

Expanding out the LHS, all terms contain a factor of p except for the very first and last terms,
which are ap and 1, respectively – hence, proved.

As for Euler’s theorem, we can consider the set of all positive integers relatively prime to n,
and multiply each element by some a relatively prime to n. We claim that the new set is a
permutation of the original set, so that, when we multiply all the elements together, we end up
with aφ(n) ≡ 1 mod n, where φ(n) is the cardinality of both sets by definition. This is because
the set of positive integers less than or equal to n that are relatively prime to n is a group, hence
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closed under multiplication – in fact, the group (Z/n)∗. (One can also prove this by Lagrange’s
theorem, which states that the order (number of elements) of a subgroup H of a group G divides
the order of G.)

48. [25] Conceptual questions.

(a) [6] Explain why the following formulas for the area of a triangle are valid: 1
2bh,

1
2ab sinC, Heron’s

formula, Shoelace formula.

Solution:

• 1
2bh: Drop an altitude of the triangle, and note that each of the two resulting right triangles
can be reflected over their diagonals to produce a rectangle with height h and base length b.

• 1
2ab sinC: For acute triangles with C < 90◦, draw the altitude opposite the angle C, so that

sin(C) is the ratio of that altitude length h to the length of AC =: b. Then 1
2ab sinC = 1

2ah,
which by the previous part, is the area of the triangle.

For obtuse triangles with C > 90◦, we use the fact that sin(180◦ − x) = sin(x) for all x
to write sin(C) = sin(180◦ − C), and repeat the above argument by drawing the altitude
outside the triangle down to BC.

• Heron’s formula: Say a triangle has side lengths a, b, and c, and that the side of length b
is “flat” (parallel to the x-axis). Let the height of the triangle (down to the side of length
b) be h, and let the portion of the flat side length adjacent to side length a be x and the
remaining portion (adjacent to side length c) be b − x. Then, by the Pythagorean theorem,
we have the simultaneous equations x2 + h2 = a2, (b − x)2 + h2 = c2. Expanding gives

b2 − 2bx+ x2 + h2 = c2, so that b2 − 2bx = c2 − a2 and x = b2+a2−c2

2b . We want to express h
in terms of a, b, and c, and we know that

h2 = a2 − x2 = a2 − (b2 + a2 − c2)2

4b2
=

4a2b2 − (b4 + a4 + c4 + 2a2b2 − 2b2c2 − 2a2c2)

4b2

=
2a2b2 + 2a2c2 + 2b2c2 − a4 − b4 − c4

4b2
.

Therefore, we have

1

2
bh =

√
2a2b2 + 2a2c2 + 2b2c2 − a4 − b4 − c4

4
,

and this is equivalent to Heron’s formula.

• Shoelace: Without loss of generality, say that the triangle has vertices at (0, 0), (a, b), and
(c, d), because any triangle can be translated in the xy-plane so that one of its vertices lies
at the origin. Furthermore, assume wlog that c ≥ a and b ≥ d. Then the triangle is inscribed
in a rectangle with side lengths c and b, with right triangles cut out whose side lengths are a
and b, c and d, and c− a and b− d. We then get the area of the triangle as

cb− ab+ cd+ (c− a)(b− d)

2
=

2cb− (ab+ cd+ (cb− cd− ab+ ad)

2
=

cb− ad

2
.

As we wanted to show that the area was 1
2 |ad− bc|, we are done, since in this case, bc ≥ ad,

and ad− bc < 0, meaning that |ad− bc| = cb− ad as desired.

(b) [4] Explain why the centroid cuts each median of a triangle into a 2:1 ratio.

Solution: Suppose we have triangle ABC with midpoints D of BC, E of AC, and F of AB.
Draw EF ; then △AEF is similar to △ACB, and so EF ∥ CB with CB = 2EF . Letting G
be the centroid of △ABC, we note that △EFG is similar to △CBG, because of vertical angles
(m∠GEF = m∠GBC, and m∠EFG = m∠GCB). Hence, BG = 2GE and CG = 2GF . To prove
AG = 2GD likewise, draw the line segment DF and observe that triangles △DFG and △AGC
are similar in the same way.

Page 18



(c) [5] Can you prove the formulas for sine, cosine, and tangent addition/subtraction?

Solution: It suffices to prove these for addition; we can simply substitute −y in place of y in
the addition formulas sin(x+ y), cos(x+ y), and tan(x+ y) (using the fact that cos(−y) = cos(y)
and sin(−y) = − sin(y)).

To prove that

sin(x+ y) = sin(x) cos(y) + cos(x) sin(y),

we can consider a line segment AB (wlog with length 1) sweeping out an angle measure of x
to line segment AC, then another angle measure of y in the same direction to AD. Drop the
perpendiculars from D to E on AB, from D to F on AC, from F to G on AB, and from F to H
on DE. Then observe that sin(x) = FG

AF , cos(x) = DH
DF (since m∠HDF = x), sin(y) = FD

DA , and

cos(y) = AF
DA . Also note that sin(x+ y) = DE

AD and cos(x+ y) = AE
AD , and that we obtain

sin(x) cos(y) + cos(x) sin(y) =
FG

AF
· AF

DA
+

FD

DA
· HD

DF
=

FG+HD

DA
=

DE

DA
= sin(x+ y).

The cosine addition formula is basically identical, except using the observation that EA =
GA− FH.

Using the sin/cos addition formulas, we have

tan(x+ y) =
sin(x+ y)

cos(x+ y)

=
sin(x) cos(y) + cos(x) sin(y)

cos(x) cos(y)− sin(x) sin(y)

=

(
sin(x) cos(y)+cos(x) sin(y)

cos(x) cos(y)

)
(

cos(x) cos(y)−sin(x) sin(y)
cos(x) cos(y)

)

=

sin(x)
cos(x) +

sin(y)
cos(y)

1− sin(x)
cos(x) ·

sin(y)
cos(y)

=
tan(x) + tan(y)

1− tan(x) tan(y)
,

as desired.

(d) [10] Building upon the previous part, the Chebyshev polynomials of the first kind are defined by

Tn(cos(θ)) := cos(nθ), (1)

and the Chebyshev polynomials of the second kind are defined by

Un(cos(θ)) :=
sin((n+ 1)θ)

sin(θ)
(2)

for all non-negative integers n and real numbers θ.

i. [7] Explain why we have linear recurrence relations for Tn and for Un, and write explicitly
what the recurrence relations are. Why do you think they’re so similar? What does all of
this have to do with de Moivre’s formula?
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ii. [3] The Chebyshev polynomials of the first kind are useful in approximation theory as the
polynomials (with the largest possible leading coefficient) whose absolute value on [−1, 1] is at
most 1. Because of this, their roots, which are called Chebyshev nodes, are used in polynomial
interpolation of continuous functions; the resulting interpolant is a close approximation of the
function. Intuitively speaking, where do you think this connection comes from?

Solution:

i. Because Tn(cos(θ)) = cos(nθ), we have

Tn+1(cos(θ)) = cos((n+ 1)θ) = cos(nθ + θ) = cos(nθ) cos(θ)− sin(nθ) sin(θ)

as well as

Tn−1(cos(θ)) = cos((n− 1)θ) = cos(nθ − θ) = cos(nθ) cos(θ) + sin(nθ) sin(θ),

so that

(Tn+1 + Tn−1)(cos(θ)) = 2 cos(nθ) cos(θ),

and therefore,

2xTn(x) = Tn+1(x) + Tn−1(x),

or, in other words,

Tn+1(x) = 2xTn(x)− Tn−1(x).

The recurrence relation for Un is similar, and its derivation is left as an exercise:

Un+1(x) = 2xUn(x)− Un−1(x),

only with U1(x) = 2x instead of T1(x) = x; the similarity comes from the fundamental
similarity of the sine and cosine addition formulas. Recall that de Moivre’s formula says
that (cos(x) + i sin(x))n = cos(nx) + i sin(nx), so if we can express the RHS in terms of the
Chebyshev polynomials Tn and Un, we’ve effectively found a way to expand trigonometric
polynomials and relate them to powers of “basic” polynomials in sin(x) and cos(x) (see also
the recursion formulas we’ve just proven).

ii. If we substitute x := cos(t), as we did in part (i) to obtain the recurrence relations, we can
write a polynomial as a linear combination of terms including cos(nt) terms, which actually
form the basis for the study of Fourier series. The ony constraint is on the coefficient of
cos(nt), which give rise to the Chebyshev polynomials.

49. [20] Applied contest-like questions.

(a) [4] Compute the remainder when

202220222022 · · · 2022︸ ︷︷ ︸
2022 copies of 2022

is divided by 33.

Answer: 18

Solution: By the Chinese remainder theorem, we split this into mod 3 and mod 11. Modulo
3, we compute the sum of the digits as 6 · 2022, which is a multiple of 3, so we get 0 mod 3.
Modulo 11, the alternating sum of digits is 4 · 2022)− 2 · 2022 = 4044 ≡ 7 mod 11. Hence, we get

18 mod 33.
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(b) [6] (Source: SMT 2019) Let n be a real number. What is the maximum possible value of

|
√

n2 + 4n+ 5−
√
n2 + 2n+ 5|?

Answer:
√
2

Solution: Notice that n2 + 4n + 5 = (n + 2)2 + 12, and n2 + 2n + 5 = (n + 1)2 + 22. Con-
sider the points (0, 0), (n+ 2, 1), and (n+ 1, 2). By the triangle inequality, the distance between

the points (n+ 2, 1) and (n+ 1, 2), which is
√
2 , is the maximum (equality holds).

(c) [10] Let r, s, and t be the complex roots of

x3 − x2 + x+ 1.

Compute

1

r3
+

1

s3
+

1

t3
.

Answer: −7

Solution: Consider the quantity

(r2 − r + 1)(s2 − s+ 1)(t2 − t+ 1),

which is equal to

(r3 + 2)(s3 + 2)(t3 + 2) = (rst)3 + 2((rs)3 + (rt)3 + (st)3) + 4(r3 + s3 + t3) + 8,

and also to
(
− 1

r

) (
− 1

s

) (
− 1

t

)
= − 1

rst = 1 by Vieta’s formulas.

This means that

−1 + 2

(
− 1

r3
− 1

s3
− 1

t3

)
+ 4(r3 + s3 + t3) + 8 = 1,

or

−2

(
1

r3
+

1

s3
+

1

t3

)
+ 4(r3 + s3 + t3) = −6.

It remains to compute r3 + s3 + t3. Since

r3 + s3 + t3 = (r + s+ t)3 − 3r2(s+ t)− 3s2(r + t)− 3t2(r + s)− 6rst

= 1− 3r2(1− r)− 3s2(1− s)− 3t2(1− t) + 6 = 7− 3(r2 + s2 + t2) + 3(r3 + s3 + t3),

and

r2 + s2 + t2 = (r + s+ t)2 − 2(rs+ st+ tr) = 1− 2(1) = −1,

we have

r3 + s3 + t3 = 10 + 3(r3 + s3 + t3),

so that r3 + s3 + t3 = −5, and 1
r3 + 1

s3 + 1
t3 = −7 .
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