

Contest File (Europe/Africa)

Middle School Division Saturday, March 26, 2022

- 1. Assuming that 1 meter is equal to 100 centimeters, 1 yard is equal to 3 feet, 1 foot is equal to 12 inches, and 40 inches is equal to 1 meter, how many centimeters are equal to one yard?
- 2. Blanche writes, for each $1 \le k \le 26$, k copies of the k^{th} letter of the alphabet in a row, so that her string begins ABBCCCDDDD ...; and ends with 26 Z's. What is the middle letter in her string?
 - (a) M
 - (b) P
 - (c) R
 - (d) T
 - (e) none of the above
- 3. The circumference of a 150° sector of a circle with integer radius is $15\pi + k$ for some integer k. What is k?
 - (a) 18
 - (b) 24
 - (c) 36
 - (d) 60
 - (e) none of the above
- 4. The sum of the square roots of three distinct positive integers a, b, and c summing to 35 is an integer. Compute the product abc.
- 5. How many positive integers between 1 and 100, inclusive, are the positive difference between two numbers of the form $N^2 N + 1$ for some positive integer N?
- 6. Sixty times a positive integer leaves a remainder of 58 when divided by 119. Compute the smallest possible value of this positive integer.
- 7. Triangle ABC has AB = AC = 10 and BC = 12. Point D lies on \overline{BC} with BD = 10. Compute AD^2 .
- 8. Chester flips 4 fair coins, and Rhiannon flips 6 fair coins. What is the probability that Rhiannon flips more heads than Chester? Express your answer as a common fraction.
- 9. Square MATH has side length 2. Point P lies on \overline{MA} such that the area of quadrilateral PATH is 3.9. Compute the area of overlap between quadrilateral PATH and triangle MTH. Express your answer as a common fraction.
- 10. Compute the sum of all integers n such that

$$\frac{\sqrt{n}+5}{\sqrt{n}+1}$$

is an integer.

- 11. An isosceles triangle has a base length of 10 and two side lengths of 13. A point inside the triangle is equidistant with common distance d from all three vertices of the triangle. Then d can be written in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Compute m + n.
- 12. A positive integer is called *stable* if none of its digits are greater than the cube of the smallest digit. Compute the number of stable positive integers less than or equal to 1000.
- 13. Given that

$$7 < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{673} < 8,$$

compute the largest integer not exceeding

$$\frac{3}{1+2} + \frac{6}{4+5} + \frac{9}{7+8} + \frac{12}{10+11} + \dots + \frac{2022}{2020+2021}.$$

- 14. Let rectangle ABCD have AB = 3 and BC = 6. Points E, F, G, and H lie on $\overline{AB}, \overline{BC}, \overline{CD}$, and \overline{DA} respectively such that EB = GD = 1 and EF = GH. If the perimeter of AEFCGH is at most 90 percent of the perimeter of ABCD, compute the maximum possible length of \overline{FC} . Express your answer as a common fraction.
- 15. The *digital root* of a positive integer is the result of repeatedly summing the digits of that integer until a single integer from 1 to 9, inclusive, is obtained. For example, the digital root of 2022 is 6, the digital root of 1234567 is 1 (since the sum of digits is 28, 2 + 8 = 10, and 1 + 0 = 1), and the digital root of 36 is 9. Compute the sum of the digital roots of all the positive integers from 1 to 2022, inclusive.
- 16. A set consists of sixteen distinct positive integers which sum to 139. When one of these sets is chosen uniformly at random, compute the expected value of its largest element.
- 17. For each positive integer n, define

$$f(n) = \frac{\sum_{i=1}^{n} (i+i^2)}{\sum_{i=1}^{n} i^3}.$$

Compute the smallest positive integer n for which $f(n) \leq \frac{1}{10}$.

- 18. Let ABCD be a rectangle with AB = 2 and BC = 1. Suppose that E and F are points on \overline{AB} and \overline{CD} , respectively, lying on the same side of \overline{BC} , such that $AE \cdot CF = 1$ and $EF = \frac{5}{4}$. The largest possible length of CF can be written in the form $\frac{p+\sqrt{q}}{r}$, where p, q, and r are positive integers with q not divisible by the square of a prime. Compute p + q + r.
- 19. Let n be a positive integer. A permutation of $(a_1, a_2, a_3, \dots, a_{2n})$ is called *rightweight* if $2(a_1+a_2+a_3+\dots+a_n) \leq a_{n+1}+a_{n+2}+a_{n+3}+\dots+a_{2n}$. Compute the number of permutations of (1, 2, 3, 4, 5, 6, 7, 8) that are rightweight.
- 20. Let $\tau(n)$ denote the number of positive integer divisors of n. Compute the number of positive integers $n \leq 100$ satisfying $\tau(n) + \tau(2n) = 18$.