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1. If x = |x+ 20| − 22, compute x.

Answer: −21

We have x+22 = |x+ 20|; note that x+ 20 must be negative, since x+ 22 ̸= x+ 20. This means that

|x+ 20| = −(x+ 20) = −x− 20, and solving x+ 22 = −x− 20, we get 2x = −42, or x = −21 .

2. Compute the number of positive integers k for which 5 < k
1000−k < 6.

(a) 20

(b) 22

(c) 23

(d) 25

(e) none of the above

Answer: E

We have from 5 < k
1000−k that 5(1000 − k) = 5000 − 5k < k, or 5000 < 6k =⇒ k ≥ 834. On

the other hand, we also have k < 6(1000− k) = 6000− 6k, so that 7k < 6000, or k ≤ 857. This gives

857− 834 + 1 = 24 possible positive integer values of k.

3. For a two-digit positive integer N , Byron subtracts from N the product of its digits. The result is 74.
What was Byron’s original choice for the integer N?

Answer: 92

Let N = ab = 10a + b for digits 7 ≤ a ≤ 9 and 0 ≤ b ≤ 9. If a = 7, then ab must be a multi-
ple of 7, but this forces N ≥ 81, which is a contradiction. If a = 8, we have 82 as a candidate, but the
product of digits is 16, not 8. Finally, if a = 9, we find that b = 2 works, so N = 92 .

4. It is currently 2:00. After how many minutes will the hour and minute hands on a 12-hour clock form
a 45◦ angle between them for the first time? Express your answer as a common fraction.

Answer:
30

11

The angle between the hands at 2:00 is 60◦ (or, more precisely, the hour hand is at an angle of
+60◦ relative to the minute hand). With every minute that passes, the hour hand moves forward by
1
60 of one hour, or 30◦ along the clock face, which is 0.5◦, and the minute hand moves 1

60 of the way
around the clock, or 6◦. Therefore, they grow 5.5◦ closer (or further apart) every minute. For the

hands to get 15◦ closer, it would take 15
5.5 =

30

11
minutes.

5. A video on the video sharing site CyberCast has 100 more likes than dislikes. The score of a video is
computed as 1.2l − 0.9d, where l and d are the numbers of likes and dislikes, respectively. If the score
of the video is 285, and each vote is either a like or a dislike, compute the total number of votes on the
video.

(a) 600

(b) 900

(c) 1050

(d) 1200

(e) none of the above
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Answer: D

We have l = d+100, so the score in terms of the number of dislikes d is 1.2(d+100)−0.9d = 0.3d+120.

Setting this equal to 285 gives d = 550, and thus, l = 650, so the total number of votes is l+d = 1200 .

6. The sum of the squares of the first n positive integers ends in 6. Compute the smallest possible value
of n.

Answer: 11

We have n(n+1)(2n+1)
6 ≡ 6 mod 10. This implies that n(n + 1)(2n + 1) ≡ 6 mod 10, or to 0 mod 2

and 1 mod 5 by the Chinese remainder theorem. We note that n(n + 1)(2n + 1) is always even, so it
suffices to find the smallest n for which n(n+ 1)(2n+ 1) ≡ 1 mod 5. We can’t have n ≡ 0, 2, 4 mod 5,
for these would make n, 2n+ 1, and n+ 1 multiples of 5, respectively. Additionally, for n ≡ 3 mod 5,
we get that n(n+ 1)(2n+ 1) ≡ 3 · 4 · 7 ≡ 4 mod 5, so we rule this out as well. Trying n = 1, 6, 11, we

find that n = 11 is the smallest possible value.

7. What is the average value of the base-9 positive integers less than 1009, when they are read as base-10
integers?

Answer:
891

20

This is
1 + 2 + 3 + · · ·+ 8 + 10 + 11 + 12 + · · ·+ 18 + · · ·+ 80 + 81 + 82 + · · ·+ 88

80

=
36 + 9(14 + 24 + 34 + · · ·+ 84)

80
=

36 + 9 · (98 · 4)
80

=
3564

80
=

891

20
.

8. The letters in CYBERMATH are each written down on their own slip of paper and tossed into a
bag. Three slips of paper are then drawn out of the bag, without replacement. Compute the probabil-
ity that at least two vowels (A, E, I, O, U, or Y) are drawn. Express your answer as a common fraction.

Answer:
19

84

There are 3 vowels, so the probability that three vowels are drawn is 1

(93)
= 1

84 (since all letters

are distinct). The probability that two vowels are drawn is
(32)(

6
1)

(93)
= 18

84 , the probability that one vowel

is drawn is
(31)(

6
2)

(93)
= 45

84 , and the probability that no vowels are drawn is
(63)
(93)

= 20
84 . The probability of

drawing at least two vowels is therefore
19

84
.

9. For every positive integer n, let Q(n) be the closest integer to
√
n. What is the value of Q(1)+Q(2)+

Q(3) + · · ·+Q(100)?

Answer: 670

We have 1.52 = 2.25, 2.52 = 6.25, 3.52 = 12.25, and so forth, with 8.52 = 72.25 and 9.52 = 90.25, so
that Q(1) = Q(2) = 1, Q(3) = Q(4) = Q(5) = Q(6) = 2, Q(7) = Q(8) = · · · = Q(12) = 3, and so on
until Q(73) = Q(74) = Q(75) = · · · = Q(90) = 9 and Q(91) = Q(92) = Q(93) = · · · = Q(100) = 10.

Altogether, we get a sum of 1 · 2 + 2 · 4 + 3 · 6 + · · ·+ 9 · 18 + 10 · 10 = 670 .

10. If x and y are positive real numbers so that x2 + y2 = 74 and x+ y = 12, compute x3 + y3.
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Answer: 468

Since x2+y2 = (x+y)2−2xy = 144−2xy, we get xy = 35. Then x3+y3 = (x+y)3− (3x2y+3xy2) =

1728− 3xy(x+ y) = 1728− 3 · 35 · 12 = 468 .

11. Suppose f is a quadratic polynomial with f(0) = 1, f(1) = 20, and f(2) + f(3) = 22. Then the
coefficient of its linear term can be written in the form m

n , where m and n are relatively prime positive
integers. Compute m+ n.

Answer: 235

Let f(x) = ax2 + bx+ c for constants a, b, and c with a ̸= 0. Plugging in x = 0, we get f(0) = c = 1.
Plugging in x = 1, we get a + b + c = 20, so a + b = 19. Plugging in x = 2 and x = 3, we get
(4a + 2b + c) + (9a + 3b + c) = 22, so 13a + 5b + 2c = 22 and 13a + 5b = 20. Solving the system
a+ b = 19, 13a+ 5b = 20 gives (a, b) =

(
− 75

8 , 227
8

)
. Here, b = 237

8 is the coefficient of the linear term,

and m+ n = 227 + 8 = 235 .

12. Let m and n be integers for which n is a multiple of m and mn
m+n = 10

3 . Compute the sum of the
possible values of mn.

Answer: 40

We have 3mn = 10m+10n, or 3mn− 10m− 10n = 0 =⇒ 9mn− 30m− 30n = 0. By Simon’s favorite
factoring trick, we can write this as (3m − 10)(3n − 10) = 100. Since 3m − 10 and 3n − 10 are both
integers that are congruent to 2 mod 3, we want them to be integer factors of 100 congruent to 2 mod 3
(up to sign). These are −1, 2, 5, 20, and 3m − 10 = 2, 5, 20,−2,−5,−20 yield m = 4, 5, 10, 8

3 ,
5
3 ,−

10
3 ,

respectively. The integer values of m, m = 4, m = 5, and m = 10, yield n = 20, n = 10, and n = 5,
respectively. As 20 is a multiple of 4 and 10 is a multiple of 5, but 5 is not a multiple of 10, and 30 is
a multiple of −3, the resulting distinct values of mn are 80, 50, and −90, which sum to 40 .

Another method is to set n = km for some integer k, from which mn
m+n = km2

m(1+k) =
10
3 , and k

1+k ·m = 10
3 .

Since 1
2 ≤ k

1+k < 1 if k > 0, and otherwise 1 < k
1+k ≤ 2 if k < −1, we obtain m ∈ {2, 3, 4, 5, 6}. Of

these, only m = 3, m = 4, and m = 5 work, and these give n = −30, n = 20, and n = 10 as before, so
the sum of the possible values of mn is again 40 .

13. Line segment AB has side length 5, and point C lies in the plane of AB with AC2 = CB2 + 1. Point
M is the midpoint of AB. If MC = 5, the square of the distance from C to AB can be written in the
form m

n , where m and n are relatively prime positive integers. Compute m+ n.

Answer: 2599

We can draw the following diagram:
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A B

C

M

With D the foot of the perpendicular from C to AB as above, CD = h, DA = x, and DB = 5− x, we
obtain x2 + h2 = (5− x)2 +1, so x2 + h2 = 26− 10x+ x2 + h2, and x = 13

5 . So MD = 1
10 , from which

we get DC2 = 2499
100 and m+ n = 2499 + 100 = 2599 .

14. Let a and b be real numbers for which a2+b2

ab = 7 and a + b = 6. Compute max(a, b). Express your
answer in simplest radical form.

Answer: 3 +
√
5

From a2 + b2 = 7ab, we can write a2 + 2ab + b2 = (a + b)2 = 9ab, and thus ab = 4. Solving the
resulting system a + b = 6, ab = 4 yields a(6 − a) = 4, or a2 − 6a + 4 = 0 =⇒ a = 3 ±

√
5, with

b = 3∓
√
5. Among these, 3 +

√
5 is the larger value.

15. Square ABCD has side length 1. A semicircle has arc AB and center at the midpoint of AB. Point
Q lies on the circumference of the semicircle so that the distance from Q to CD is 1.2. If Q is closer

to C than to D, the value of QC2 can be written in the form m−
√
n

p , where m, n, and p are positive
integers, and n is not a multiple of the square of any prime. Compute m+ n+ p.

Answer: 50

We have the following diagram:
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A B

CD

FM

Q

Labeling the midpoint of AD as M , and noting that MQ = 1
2 , we have MF =

√
21
10 , and thus,

FB = 5−
√
21

10 . Then QC2 =
(
6
5

)2
+FB2 = 19−

√
21

10 , from which we obtain p+q+r = 19+21+10 = 50 .

16. A magical tetrahedral die initially has 1 red face and 3 blue faces, each equally likely to be rolled.
Whenever a red face comes up, one of the blue faces changes to a red face. Compute the expected
number of rolls before all faces of the die turn red.

Answer:
22

3

The expected number of rolls before rolling the first red face is 1
1
4

= 4, by the linearity of expec-

tation (in general, an event with probability p of occuring is such that the expected number of the
trial on which it occurs is 1

p ). The expected number of rolls of the new 2-red, 2-blue die before a red
face comes up is 2, and the expected number of rolls of the resulting 3-red, 1-blue die before a red
face comes up is 4

3 . Altogether, by linearity of expectation, this gives an expected number of rolls of

4 + 2 + 4
3 =

22

3
.

17. What is the area of a triangle whose side lengths are
√
2, 3, and

√
11 + 2

√
3 + 2

√
6? Express your

answer as a common fraction in simplest radical form.

Answer:

√
6−

√
3

2

Without loss of generality, let the coordinates of the vertices be (0, 0), (a, b), and (c, d), with a2+b2 = 2,
(c − a)2 + (d − b)2 = 9, and c2 + d2 = 11 + 2

√
3 + 2

√
6. Combining these equations, we get

ac + bd = 2 +
√
3 +

√
6. One might reasonably guess that (a, b, c, d) = (1, 1, 1 +

√
3, 1 +

√
6). By

Shoelace, the triangle’s area is 1
2 |ad− bc|, which evaluates to

√
6−

√
3

2
.

18. The sum of two positive integer perfect squares ends in the digits 34. Compute the second-smallest
possible sum of the square roots of the integers.

Answer: 18
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We know that (3, 5) gives the smallest possible sum of 8; we can also check that (225, 9) works,
so the answer is no more than 18. No pair of perfect squares sums to 134, and if x2 and y2 with
x2 + y2 = 234 were closer together, the sum x + y would exceed 18. So 18 is the second-smallest
possible value of x+ y.

19. Suppose that
10∑

n=2

n2(
n
2

)(
n+1
2

) =
p

q

for relatively prime positive integers p and q. Compute p+ q.

Answer: 199

The sum telescopes as
10∑

n=2

(
1(
n
2

) + 1(
n+1
2

)) ,

as we can see by obtaining a common denominator:

1(
n
2

) + 1(
n+1
2

) =

(
n+1
2

)
+
(
n
2

)(
n+1
2

)(
n
2

) =
(n+1)n+n(n−1)

2(
n+1
2

)(
n
2

) =
n2(

n+1
2

)(
n
2

) .
Notice that our sum is

2

(
1(
2
2

) + 1(
3
2

) + 1(
4
2

) + · · ·+ 1(
11
2

))−

(
1(
2
2

) + 1(
11
2

)) = 2

(
1(
2
2

) + 1(
3
2

) + 1(
4
2

) + · · ·+ 1(
11
2

))− 56

55
.

To finish, we observe that
n∑

k=2

1(
k
2

) = 2− 2

n
,

which can be proven by induction. Then our sum is just 2
(
2− 2

11

)
− 56

55 = 144
55 , from which p + q =

144 + 55 = 199 .

20. A set S of positive integers is said to be relatively open if the set T := {s1 + s2 : s1, s2 ∈ S, s1 ̸= s2}
is missing at least half of the positive integers from min(S) to max(S), inclusive. For example,
S = {1, 2, 3, 10} is relatively open, because T = {3, 4, 5, 11, 12, 13} is missing 1 and 6-10 among [1, 10],
whereas S = {1, 2, 3, 5, 6, 10} would not be relatively open, because T = {3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16}
is only missing 1, 2, and 10 among [1, 10]. Compute the number of nonempty subsets of {1, 2, 3, 4, 5, 6}
that are relatively open.

Answer: 58

Note that the sum of any two distinct elements must be at least 3. If min(S) = 1 and max(S) = 6 (both
1 and 6 are in S), the condition of S being relatively open is equivalent to its sumset T not having all
of 3-6 as elements. If two or fewer of {2, 3, 4, 5} are in S, there are only

(
3
2

)
= 3 sums of elements in S

that do not include 6, so such sets are necessarily relatively open. If all four elements from {2, 3, 4, 5}
were to belong to S, T = {3, 4, 5, 6, 7, 8, 9}. If 5 /∈ S or 4 /∈ S, then T contains {3, 4, 5, 6}. If 3 /∈ S or
2 /∈ S, then S will be relatively open. This gives 13 relatively open sets in this case.

If min(S) = 1 and max(S) = 5, S will be relatively open if it is {1, 5}, {1, 2, 5}, {1, 3, 5}, {1, 4, 5},
{1, 2, 4, 5}, or {1, 3, 4, 5}, adding 6 to our total of relatively open sets S. If min(S) = 2 and max(S) = 6,
the smallest possible element of T is 2 + 3 = 5, so all 8 possible sets S in this case are relatively open.

If max(S) − min(S) ≤ 3, then S is relatively open, because for max(S) − min(S) = 3, with, say,
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min(S) = m and max(S) = m+3, there are two numbers between max(S) and min(S), namely m+1
and m+2, but 2m+1 can be at most 1 less than m+3, meaning that T contains at most 2 elements.
But |S| = 4, meaning that S is relatively open. Similar reasoning applies to max(S)−min(S) = 2, 1, 0,
for yet another 3 · 4 + 4 · 2 + 5 · 1 + 6 = 31 relatively open sets S.

Altogether, there are 13 + 6 + 8 + 31 = 58 relatively open subsets of {1, 2, 3, 4, 5, 6}.

TB. How many 10-digit positive integers have digits that sum to exactly 10?

Answer: 48619


